Effects of resting temperature and sodium citrate on dynamic viscoelastic coagulometry in New Zealand white rabbits.

William R. Womble, Andrew S. Hanzlicek, Rachel Maranville, Debosree Pathak, Ian Kanda, Ashley Bickell, João Brandão
Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK

BACKGROUND

• European rabbits (Oryctolagus cuniculus) are useful for coagulation studies due to their size, cost, and reactions to hemorrhage and thrombotic agents.²

• Viscoelastic coagulation tests, such as dynamic viscoelastic coagulometry (DVC, Sonoclot®), have shown promise in revealing a more accurate representation of coagulation status by including cellular components absent in plasma-based tests.¹

• It is standard practice with DVC to allow citrated samples to rest for thirty-minutes at room temperature before analysis.

• A previous study indicates that hypothermic rabbits are hypocoagulable, indicating temperature dependence in DVC.³

• A previous study indicates that citrated blood is hypercoagulable relative to fresh whole blood.⁴

OBJECTIVES

• To determine if temperature during a thirty minute rest period influences the results of DVC analysis

• To determine if citrate affects the results of DVC analysis as compared to fresh whole blood

METHODS

• Blood samples were collected from eighteen New Zealand white rabbits via the jugular vein.

• Blood was partitioned into 3 groups and randomly allocated to different Sonoclot® channels in glass bead activated cuvettes (gbACT+) to be analyzed:
 • Fresh whole blood immediately analyzed in Sonoclot®
 • Blood that was anticoagulated with sodium citrate and kept at room temperature for 30 minutes before recalcification with CaCl₂ and analysis in Sonoclot®
 • Blood that was anticoagulated with sodium citrate and kept at 37°C for 30 minutes before recalcification with CaCl₂ and analysis in Sonoclot®

• Results were compared between groups using a Wilcoxon Two Sample Test.

RESULTS

Fig. 2: Activated Clotting Time (ACT) was longer in room temperature blood as compared to 37°C blood (228.22 vs. 202.00 sec., P<.015).

ACT was longer in room temperature blood as compared to fresh whole blood (228.22 vs. 91.06 sec., P<.0001).

ACT was longer in 37°C blood as compared to room temperature blood (202.00 vs. 91.06, P=.0001).

Fig. 3: Clot Rate (CR) was lower in room temperature blood as compared to 37°C blood (15.8 vs. 22.1 U/min., P=.015).

CR was higher in fresh whole blood as compared to room temperature blood (28.58 vs. 15.09 U/min., P=.041).

CR was not statistically different between fresh whole and 37°C blood (28.58 vs. 22.10 U/min., P=.447).

Fig. 4: Platelet Function (PF) did not statistically differ between room temp and 37°C blood (3.8 vs. 4.1, P=.35).

PF was lower in fresh whole blood as compared to room temperature blood (1.60 vs. 3.83, P<.0001).

PF was lower in fresh whole blood as compared to 37°C blood (1.60 vs. 4.14, P=.0001).

CONCLUSIONS

• These results indicate that rest-time temperature is a pre-analytical factor that should be considered with DVC analysis. Further studies are needed to determine ideal temperatures.

• As would be expected for a system composed of cells and enzymes that normally function at body temperature, room temperature blood was relatively hypocoagulable when compared to 37°C blood as evidenced by significantly longer ACT and lower CR.

• With regards to PF in fresh vs citrated blood, these results are harmonious with a previous study done in humans indicating that citrated blood is hypercoagulable with PF being higher in both citrated samples relative to fresh whole blood irrespective of temperature.⁵ With regards to CR, however, temperature proved to possibly be the more influential factor. The fresh whole blood had a lower CR than 37°C room temperature blood but was not statistically different from the 37°C citrated blood. Like the study in humans, ACT results were shorter in fresh blood samples, indicating that recalcification might not have been optimum.

REFERENCES

FUNDING

Supported by the Oklahoma State University Center for Veterinary Health Sciences, Joan Kirkpatrick Endowed Chair in Small Animal Internal Medicine and the Dr. Kristie Plunkett Exotic Animal Fund.

Fig. 1: A 2 channel Sonoclot® instrument

Fig. 2: Activated Clotting Time (ACT) was longer in room temperature blood as compared to 37°C blood (228.22 vs. 202.00 sec., P<.015).

ACT was longer in room temperature blood as compared to fresh whole blood (228.22 vs. 91.06 sec., P<.0001).

ACT was longer in 37°C blood as compared to room temperature blood (202.00 vs. 91.06, P=.0001).

Fig. 3: Clot Rate (CR) was lower in room temperature blood as compared to 37°C blood (15.8 vs. 22.1 U/min., P=.015).

CR was higher in fresh whole blood as compared to room temperature blood (28.58 vs. 15.09 U/min., P=.041).

CR was not statistically different between fresh whole and 37°C blood (28.58 vs. 22.10 U/min., P=.447).

Fig. 4: Platelet Function (PF) did not statistically differ between room temp and 37°C blood (3.8 vs. 4.1, P=.35).

PF was lower in fresh whole blood as compared to room temperature blood (1.60 vs. 3.83, P<.0001).

PF was lower in fresh whole blood as compared to 37°C blood (1.60 vs. 4.14, P=.0001).